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A B S T R A C T   

The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly 
believed that translation deviating from the main coding region is to be avoided at all times inside cells. 
However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the 
scope and origin of translational “noise” are just beginning to be appreciated. Although largely overlooked, those 
translational “noises” are associated with a wide range of cellular functions, such as producing unannotated 
protein products. Furthermore, the dynamic nature of translational “noise” is responsive to stress conditions, 
highlighting the beneficial effect of translational “noise” in stress adaptation. Mechanistic investigation of 
translational “noise” will provide better insight into the mechanisms of translational regulation. Ultimately, they 
are not “noise” at all but represent a signature of cellular activities under pathophysiological conditions. Deci-
phering translational “noise” holds the therapeutic and diagnostic potential in a wide spectrum of human 
diseases.   

1. Introduction 

A central pillar of biology is the high fidelity of gene expression in all 
organisms. The textbook knowledge tells us the error rate of DNA 
replication is on the order of 10–9, RNA transcription 10–6, and mRNA 
translation 10–4 [1–5]. As translation consumes a lion’s share of cellular 
energy, the relatively poor fidelity of protein synthesis is a bit surprising. 
On average, there is one error for every ten thousand peptide bonds 
made during mRNA translation. Moreover, the ribosome does not 
strictly adhere to the code instruction, resulting in alternative start 
codon selection [6], ribosome frameshifting [7], as well as stop codon 
readthrough [8]. A growing body of evidence suggests that decreasing 
the translation fidelity could be beneficial for biological processes [9]. 
For example, tRNA misacylation by methionine increases up to 10-fold 
upon exposing cells to oxidative stress [10]. Intriguingly, the resultant 
“mis-translation” products are more resistant to oxidative stress. Ribo-
some frameshifting is deleterious in general as premature termination 
often leads to non-functional translational products. However, some 
programmed ribosome frameshifting events give rise to new functional 
products without changing the mRNA template. The expanded coding 
potential from limited genomes is typical in viruses, including 
SARS-CoV-2 [11]. Although flexible translation increases proteome di-
versity and complexity, neither the scope nor the underlying mechanism 
is fully understood. 

To better understand translational “noise”, it is important to revisit 
what we have learned regarding translation processes in eukaryotic 
cells. Instead of giving a comprehensive review covering all the trans-
lation steps, we focus on ribosome decoding from start to stop codons. 
Eukaryotic mRNA translation typically starts with the attachment of the 
small ribosomal subunit to the 5’cap of mRNA, followed by the migra-
tion of the 48 S preinitiation complex along the 5’ untranslated region 
(5’UTR) until a start codon is encountered [12]. Once a start codon is 
selected by the scanning ribosome, the engagement of the initiator tRNA 
is followed by 60 S joining. The efficiency of start codon recognition can 
be influenced by the codon context as well as many initiation factors, 
although the precise mechanism remains elusive. It is now 
well-established that, in addition to the canonical AUG, many non-AUG 
codons could serve as potential initiation sites [13]. The 80 S ribosome 
assembly at a particular start codon primarily defines the subsequence 
open reading frame (ORF). Prior to elongation commitment, the tran-
sition of the assembled 80 S from an initiation complex to an elongation 
complex remains incompletely understood. Since the initiator tRNA is 
directly placed in the P site of the ribosome, the initiating 80 S at the 
start codon has no tRNAs at the E and A sites. Additional quality control 
mechanisms likely exist to ensure the reading frame fidelity from the 
start codon. Translation elongation commences once the amino 
acid-charged tRNA is delivered into the ribosomal A site. Upon the 
formation of the first peptide bond, the ribosome enters the elongation 
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cycle by decoding the nucleotide triplets (codon) in a successive and 
nonoverlapping fashion [14]. During elongation, the ribosome does not 
move at a constant speed but rather proceeds in a stop-and-go traffic 
manner. Both cis sequence elements and trans regulatory factors 
contribute to the variations of elongation speed [15,16]. When the 
ribosome reaches a stop codon, termination occurs via the concerted 
action of release factors [17], leading to peptide release, tRNA dissoci-
ation, and ribosome separation. In some cases, the empty ribosome re-
mains associated with mRNA and could start a second round of 
translation from upstream or downstream start codons, leading to 
translational events in 3’UTRs [18]. It is clear that multiple ORFs are 
embedded within a single messenger, forming the foundation of trans-
lational “noise”. 

2. Detecting translational “noise” 

The human transcriptome contains tens of thousands of potential 
ORFs besides the annotated ORFs [19]. Many sequence features, such as 
length, codon usage, and evolutionary conservation, are often used to 
predict the coding potential of putative ORFs [20–22]. However, posi-
tive prediction of ORFs by no means indicates active translation. Some 
ORFs may undergo selective translation in response to stress conditions 
or in different cell types. On the other hand, advances in 
high-throughput sequencing and proteomic technologies reveal myriad 
translational signals that cannot be attributed to the known ORFs. It is 
thus crucial to distinguish translational “noise” from technical noise. 

2.1. Ribosome profiling 

Ribosome profiling (Ribo-seq) is a powerful technique that provides 
a snapshot of global translation by sequencing ribosome-protected 
mRNA fragments (RPFs) [23]. Ribo-seq has become one of the 

commonly used methods to identify ORFs with active translation 
(Fig. 1A). The general procedure involves nuclease digestion, size se-
lection, cDNA library construction, and deep sequencing. A typical 
ribosome footprint is ~29 nucleotide long and different read length 
could indicate distinct ribosome status during translation. For example, 
ribosomes with empty A sites give rise to short footprints of 20–22 nt 
[24], whereas disome-protected fragments could reach up to 65 nt [25]. 
Nuclease digestion largely contributes to the length heterogeneity that 
mainly occurs at the 3’ end of RPFs [26], leaving the 5’ end nucleotide as 
a robust marker for inferring ribosome positions. When aligned to ORFs, 
RPFs show a strong three-nucleotide periodicity. This so-called footprint 
phasing is often used to gauge the quality of Ribo-seq data sets. How-
ever, different Ribo-seq methodology often results in varied 5’ end read 
accuracy. For instance, circularization after reverse transcription is 
known to introduce untemplated nucleotide addition, whereas direct 
RNA ligation suffers from sequence-dependent biases. As a result, a 
substantial number of out-of-frame footprints are attributed to technical 
artifacts. 

RPFs tend to accumulate at start and stop codons, forming the 
boundary of coding regions (CDS). Individual transcripts, however, are 
typified by peaks and valleys at various CDS positions, blurring the ORF 
boundary. As a result, computational tools are often needed to identify 
ORFs with active translation. For example, a predictor based on the 
length of RPFs (fragment length organization similarity score, FLOSS) 
showed a high sensitivity to distinguish 5’ UTR with active translation 
from other non-coding RNAs or regions [27]. RiboTaper employed a 
multitaper approach to characterize the 3-nt periodicity of footprints 
[28], revealing > 600 mRNAs with active translation in the 5’UTR. 
RIBO-TISH [29] and RiboCode [30] directly compared ribosome den-
sities in all three different frames of the putative ORF using a 
non-parametric Wilcoxon rank-sum test, with the null hypothesis that all 
three frames have similar footprint reads. Since translation termination 

Fig. 1. Methods of detecting translational “noise”. (A) A comprehensive flowchart integrating ribosome profiling (Ribo-seq) and global translation initiation 
sequencing (GTI-seq) in identification of alternative ORFs with active translation. The left panel shows the simplified procedure of Ribo-seq. The middle panel shows 
a typical distribution of footprints on a mRNA generated by Ribo-seq and GTI-seq. The right panel shows computational tools to identify alternative ORFs. (B) A 
pipeline to identify cellular proteome by mass spectrometry. (C) The deep learning model based on the data from massively paralleled reporter assays to predict the 
translatability of RNA sequences (predictome). 
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results in a drop of footprint reads after the stop codon, a ribosome 
release score helps distinguish ORF translation from the nonspecific 
background reads [31]. However, such boundary becomes ambiguous 
for transcripts with overlapping ORFs. Several studies integrated mul-
tiple parameters such as footprint length, density, and 3-nt periodicity to 
achieve ORF classification [32,33]. It appears that the 3-nt periodicity 
contributes the most to classification efficiency [32]. 

Despite the success of Ribo-seq in assessing ORF translation, identi-
fying hidden ORFs or neoORFs requires determination of authentic 
translation initiation sites (TIS-seq). One strategy is to capture initiating 
ribosomes assembled at start codons. Translation inhibitors like har-
ringtonine act on the first round of peptide bond formation [34]. A short 
incubation period allows the run-off of elongating ribosomes, thereby 
specifically halting ribosomes at all possible start sites. Since harring-
tonine binds to the free 60 S subunit first before it blocks the peptidy-
transferase center, it is uncertain whether the presence of this compound 
affects physiological start codon selection. The compound lactimido-
mycin, by contrast, binds to the empty E-site of the initiating ribosomes 
[35], enabling quantitative capture of the 80 S ribosomes assembled at 
the start codons. Indeed, profiling of RPFs marked by lactimidomycin 
(GTI-seq) revealed remarkable enrichment of ribosomes at the anno-
tated start codon [36,37]. This strategy has been successfully used to 
uncover the coding potential of the human cytomegalovirus genome 
[37], as well as the dynamics of initiating ribosomes in cancer [38]. It is 
anticipated that profiling of terminating ribosomes, once established, 
would greatly improve the accuracy of ORF identification. 

2.2. Mass spectrometry 

Ribosome occupancy is associated with but is not a direct measure of 
translation efficiency (TE). For ORFs with low TE, it is challenging to 
distinguish active translation from background noise. Mass spectrom-
etry (MS) is the main methodology that enables direct identification of 
translational products (Fig. 1B). For shotgun proteomics, proteins are 
digested using proteases and the resulting peptides are separated and 
identified using tandem mass spectrometry (MS/MS). Surprisingly, on 
average, 75% of spectra analyzed in an MS experiment cannot be 
identified [39]. Many of these spectra appear to be of high quality and 
are likely to have originated from peptides. Since search engines were 
built upon theoretical spectra derived from user-defined protein se-
quences, it is possible that the current proteome database is far from 
complete. 

Of course, not all the translational events supported by Ribo-seq 
could be confirmed by shotgun MS detection, partly because some 
encoded proteins are short-lived and of low abundance [40,41]. This is 
particularly true for non-canonical translational events. A promising 
way to detect those short-lived proteins produced by non-canonical 
translation is to monitor newly synthesized proteins by incorporating 
puromycin [42], puromycin analogs such as O-propargyl-puromycin 
(OPP) [43], or noncanonical amino acid such as L-azidohomoalanine 
(AHA) [44] into the nascent peptides. The metabolically labeled nascent 
peptides are subsequently biotinylated followed by enrichment via 
streptavidin beads. To increase the sensitivity of MS detection, protein 
extraction can be optimized by minimizing degradation mediated by 
endogenous peptidase and protease activity [45]. Additionally, some 
enrichment methods can be applied to increase the amount of the 
low-abundance proteins. For instance, acetic acid precipitation is shown 
to enrich the small and low abundance proteins [40,46]. Finally, 
although trypsin is commonly used for most MS samples to digest the 
proteins, a combination of Lys-C and trypsin could improve the sample 
quality and increase the number of detected peptides [47]. 

Besides the sample preparation, MS data analysis is crucial in peptide 
detection. It is important to compile a reference library comprising all 
coding potential of the entire genome, generating in silico six-frame 
translation covering both sense and anti-sense strands [48]. Not sur-
prisingly, searching MS data against such inflated library introduces 

many false positives, and the searching process becomes extremely 
time-consuming. Incorporating transcriptome from RNA-seq and trans-
latome from Ribo-seq into the analysis pipeline is a common strategy 
[49,50]. Since MS-based proteomics measures steady-state levels of 
proteins present in the sample, it is anticipated that the scope of pro-
teome is smaller than that of the translatome. Surprisingly, even when 
all the reading frames are considered, the identity of millions of spectra 
remains elusive. One possibility is that many peptides are subjected to 
unknown post-translational modifications. Another possibility is that 
our current understanding of translational diversity is still limited. 
Without knowing the scope of non-canonical translation, how trans-
lational “noises” contribute to the proteome landscape remains a 
fundamental knowledge gap. 

2.3. Reporter assay 

While millions of spectra from MS have no corresponding ribosome 
occupancy, a large portion of the translation signals from Ribo-seq 
cannot be validated by MS proteomics. Independent assays are thus 
required to confirm whether the “noisy” reads represent true trans-
lational events. A reporter assay is relatively straightforward albeit with 
low throughput to validate putative translation signals [45]. Instead of 
measuring the products of endogenous genes, a reporter assay is more 
suitable for identification of sequence elements responsible for active 
translation. For example, a frame-shifting reporter can be constructed by 
placing a downstream ORF at different reading frames without upstream 
stop codons [51]. Although luciferase or GFP reporters are commonly 
used as ORFs, a growing number of short peptides are included in the 
reporter assays. Typical short ORFs include HiBit, a nanoluciferase 
peptide, and SIINFEKL, a peptide that can be detected by a monoclonal 
antibody 25D1 once presented by the mouse MHC class I molecule 
H-2 Kb on the cell surface [52]. With superior detection sensitivity, those 
short ORFs greatly increase the versatility of reporter assays in vali-
dating translational “noise”. 

Besides translational validation, massively paralleled reporter assays 
(MPRAs) can be designed to explore translational “noise” in an un- 
biased manner (Fig. 1 C). By introducing variation to a particular 
sequence element, MPRAs contain fully degenerate or endogenous 
sequence fragments. As a result, the MPRA library size can be orders of 
magnitude larger than the number of genomic examples. MPRAs have 
been successfully applied to uncover sequence elements in mediating 
cap-independent translation [53], start codon selection [54], as well as 
frameshifting [55]. One limitation of MPRA is the length of the sequence 
that determines the scope of the sequence coverage. For example, a 
10-mer random sequence gives rise to 106, whereas a 50-mer generates 
> 1030 sequence combinations. Given the size and the unbiased nature 
of a MPRA library, MPRA data is more suitable than endogenous tran-
script data for deep learning and training predictive models of trans-
lational “noise” [56]. Besides random sequences, a multiplex assay 
containing pooled full-length 5’ UTRs uncovered the molecular conse-
quences of 5’ UTR mutations in human prostate cancer [57]. 

3. Origins of translational “noise” 

Deep analyses of Ribo-seq and MS data sets revealed pervasive 
translational signals across mRNAs, spanning the 5’UTR to 3’UTR. In 
this sense, “Un-Translated Region” does not seem to convey the proper 
functions of these important mRNA segments. Similarly, translational 
signals exist on many non-coding RNAs, casting doubts on the definition 
of “non-coding”. Nevertheless, the level of translational activity on these 
non-CDS regions is generally low, and it is challenging to distinguish 
translational events from background noise. Nevertheless, it is clear that 
translational signals detected on different mRNA regions rely on distinct 
mechanisms (Fig. 2). 
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3.1. Alternative initiation 

In eukaryotes, ribosomal scanning is a well-accepted model for start 
codon selection. It is commonly assumed that the first AUG triplet that 
the scanning ribosome encounters serves as the start codon for trans-
lation. However, one or more potential initiation sites could exist be-
sides the main start codon (Fig. 2 A). Accumulating evidence suggests 
that many non-AUG triplets, especially near cognate codons that differ 
from AUG by only one nucleotide, can also serve as start codons [13,58]. 
Using a series of reporter assays, previous studies uncovered that at least 
9 non-AUG triplets capable of translation initiation, with CUG showing 
the highest initiation efficiency [59]. Analysis of the human tran-
scriptome revealed that more than 90% human mRNAs contain multiple 
initiators in the 5’ UTR [19]. Indeed, the number of uORFs with active 
translation ranges from several hundred to thousand [6,60–62], 
depending on the methodology. A single study using high-quality 
Ribo-seq typically uncovers 1000 to 3000 actively translated uORFs in 
human cells [63]. By integrating multiple Ribo-seq data sets using 
various human cell lines with different culture conditions, > 15,000 
uORFs spreading across > 7000 mRNAs are listed in the small ORF 
database sORFs.org [64]. Notably, start sites in 5’ UTR are over-
represented by non-AUG initiators [19,65], implying that uORF trans-
lation is subjected to dynamic regulation. Indeed, nutrient stress has 
been reported to increase uORF translation. Elevated 5’UTR translation 
has also been observed during oncogenesis triggered by RAS-MAPK 
pathway [66]. 

Besides codon identity, potential start sites are also dependent on the 
surrounding sequence context. In mammalian cells, the initiator AUG 
triplet is usually in an optimal context with a purine at position –3 and a 
guanine at position + 4 (+1 refers to the first position of start codon) 
[67]. RNA secondary structures [68] and RNA modifications such as 
N6-methyladenosine [69] may act as barriers to slow down scanning 

subunits, increasing the probability of alternative initiation in the 5’ 
UTR. In addition to these cis sequence elements, the stringency of start 
codon selection is also subject to regulation by trans acting factors such 
as eIF1[65,66], eIF1A, and eIF5 [70,71]. eIF1 promotes initiation in the 
5’ UTR when the initiation context is suboptimal [72,73]. The poor 
initiation context of eIF1 offers an auto-regulatory mechanism to 
orchestrate eIF1 levels [74]. Not surprisingly, many helicases not only 
contribute to the scanning process, but also influence start codon se-
lection. Ded1p (DDX3 in human) is required for continuous scanning for 
structured 5’ UTRs [75], and loss-of-function mutations lead to elevated 
alternative initiation at the near-cognate start codon immediately up-
stream of RNA structures. eIF4G2 (also named DAP5 or Nat1) is reported 
to promote uORF bypassing, facilitating translation at the authentic start 
codon [76]. 

Inefficient recognition of an initiator codon results in a portion of 
scanning ribosomes continuing to scan and initiating at a downstream 
site, in a process known as leaky scanning. Not surprisingly, the number 
of identified downstream initiation sites is much fewer than the number 
of upstream initiation sites. Using Ribo-seq approach, a recent study 
uncovered 2466 upstream initiation sites, but only 13 downstream 
initiation sites, in human foreskin fibroblasts [47]. The underrepre-
sented downstream initiation is consistent with the directional scanning 
process [12], but also reflects the challenge of uncovering translational 
“noise” from the main CDS. 

3.2. Frameshifting 

Upon start codon recognition, the 80 S ribosome assembled at the 
start codon is typically thought to follow the reading frame defined by 
the start site. Since there is no punctuation between codons, the ribo-
some is expected to maintain the reading frame for hundreds of codons 
to ensure proper protein production. Although spontaneous 

Fig. 2. Origins of translational “noise”. (A) Alternative ORFs generated by alternative initiation. The left panel show alternative initiation sites in the 5’ UTR, CDS or 
3’ UTR. The authentic and alternative initiation sites are indicated by solid red and empty red triangles, respectively. The main ORFs are indicated by green frames. 
The histogram shows the frequency of alternative initiation sites on individual mRNAs. The pie chart shows the fraction of footprint reads aligned to different RNA 
species (left) and mRNA regions (right). Ribosome profiling data is obtained from GSE176058. (B) Alternative ORFs generated by ribosomal frameshifting in the 
coding region. The left panel shows alternative reading frames (the bottom two) after the frameshifting site. The original frame is shown at top. The middle panel 
shows the fraction of footprint reads aligned to different reading frames of mRNA. The right panel illustrates the programmed ribosomal frameshifting (PRF) induced 
by a slippery sequence and pseudoknot, and non-programmed ribosomal frameshifting (Non-PRF) induced by rare codons. (C) Alternative ORFs generated by stop 
codon readthrough, reinitiation or stop codon-coupled initiation. The start codon and stop codon are indicated by red and black triangles, respectively. 
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frameshifting could be deleterious as premature termination often leads 
to non-functional products, programmed ribosomal frameshifting (PRF) 
could be advantageous in some circumstances. Many viruses utilize PRF 
to regulate the production of key enzymes. For example, the frame-
shifting at the junction between ORF1a and 1b of the SARS-CoV-2 
genome is necessary for the synthesis of viral RNA-dependent RNA po-
lymerase and other viral proteins essential for the viral life cycle [11]. 
Notably, most known PRF events occur at slippery sites and are 
enhanced by downstream stimulatory elements, such as stem-loop RNA 
structures or pseudoknots (Fig. 2B) [7,77]. 

While PRF is pervasive in viruses, there is an increasing list of PRF 
cases in eukaryotes. Translation of ornithine decarboxylase (ODC) 
antizyme is one of the best-known examples [78,79]. ODC antizyme 
synthesis is dependent on the + 1 PRF at the stop codon, which allows 
ribosomes to translate downstream regions. Intriguingly, the efficiency 
of + 1 PRF is regulated by the concentration of polyamines, whose 
biosynthesis is mediated by ODC. Frameshifting can also be induced by 
rare codons [80,81], suggesting that delayed tRNA delivery into the 
A-site promotes frameshifting. Supporting this notion, depletion of 
intracellular tryptophan in melanoma cells leads to ribosome pausing at 
tryptophan codons and subsequent frameshifting [82,83]. This study 
highlights the possibility that ribosome pausing promotes frameshifting. 
Indeed, unresolved ribosome collision is known to promote both + 1 and 
− 1 frameshifting in yeast and bacteria [25,84,85]. 

Ribosome pausing is prevalent across the coding region [86], but it is 
unclear whether all pausing events are associated with certain degree of 
frameshifting. To identify translational “noise” derived from frame-
shifting, Ribo-seq data sets with superior resolution will be highly 
desirable. Since alternative translation also contributes to out-of-frame 
footprint reads in CDS, the origin of off-track translation is not imme-
diately clear. The main difference between alternative translation and 
frameshifting lies in the start codon choice. For instance, a sudden 
appearance of out-of-frame reads in CDS without obvious start codons is 
likely a result of elongation-associated frameshifting. Given the exis-
tence of non-AUG start sites, presence of the initiator tRNAi

Met could be 
the more definitive evidence for alternative initiation. 

3.3. Stop codon readthrough 

Translation termination occurs upon stop codon recognition, which 
involves competition between near-cognate tRNAs and release factors in 
the ribosomal A site [17,87]. Although termination at stop codons is 
generally efficient, stop codon readthrough occurs in organisms ranging 
from viruses to mammals (Fig. 2 C) [8]. Stop codon readthrough is 
especially prevalent in Drosophila with hundreds of transcripts under-
going active translation after the stop codon [88–90]. In mammalian 
cells, the basal level of stop codon readthrough is < 1% [91]. However, 
the stop codon readthrough can be enhanced in certain contexts, such as 
the presence of RNA secondary structures or a cytidine immediately 
after the stop codon. It has been reported that there are 23 human 
transcripts with the stop codon UGA immediately followed by CUAG, 
and all of those mRNAs showed elevated stop codon readthrough 
(>1%), with OPRL1 mRNA having the highest level of ~31% in 
HEK293T cells [92,93]. 

Phylogenetic analysis uncovered a conserved motif around the stop 
codons associated with high potential of stop codon readthrough [93]. 
By counting the footprint density in 3’ UTRs, Ribo-seq holds the po-
tential of uncovering stop codon readthrough events in human cells [89, 
94,95]. The readthrough ribosomes are supposed to maintain the same 
reading frame beyond the stop codon. However, a recent study sug-
gested that ribosomes undergoing stop codon readthrough are subjected 
to frameshifting [96]. Besides Ribo-seq, a recent study applied a com-
bination of in vitro RNA selection and high-throughput sequencing to 
characterize RNA features that facilitate stop codon readthrough [97]. 
This method highlighted the critical role of the cytidine and stem loop 
structures immediately after the stop codon. By integrating into a 

machine learning model, it enabled discovery of novel stop codon 
readthrough events in human endogenous transcripts like CDKN2B, 
LEPROTL1, PVRL3, and SFTA2. 

3.4. Stop codon-coupled initiation 

Successful translation termination involves peptide discharge, ribo-
some splitting, and mRNA release. In some cases, however, termination 
at the stop codon is followed by reinitiation in which the ribosome re-
mains bound to the mRNA and resumes scanning for downstream start 
codons (Fig. 2C) [18]. Reinitiation is often used by viruses to express 
multiple ORFs from one mRNA. Some cellular mRNAs harboring uORFs 
are also capable of reinitiation especially under stress conditions. The 
best characterized example is GCN4 in yeast and ATF4 in mammals, 
whose translation is selectively induced during amino acid deprivation 
[98]. It has been reported that reinitiation efficiency is inversely 
correlated with the length of the uORF [99,100]. Beside the uORF 
length, the distance between the uORF stop codon and the downstream 
CDS start codon is also crucial. A growing body of evidence suggests that 
reinitiation relies on certain initiation factors (eIFs) that remain 
attached to the post-termination ribosomes [101,102]. One such factor 
is eIF3 complex which has been shown to ensure prolonged retention of 
post-termination ribosomes on mRNA [103]. A recent study reported 
that eIF3a undergoes dynamic O-GlcNAc modification that influences 
the 80S-eIF3 complex formation and subsequent translation reinitiation 
[102]. 

In addition to scanning-based reinitiation after termination, the post- 
termination ribosome could migrate bi-directionally to locate start co-
dons in different reading frames. Termination-dependent reinitiation 
has been described in a number of RNA viruses with overlapping stop 
and start codons (AUGA or UGAUG). The translation termination- 
coupled reinitiation mechanism also occurs in mammalian cells, 
contributing to translational activities in 3’UTRs. As a typical example, 
CASQ2 relies on a GAUGAU repeat upstream of the stop codon to enable 
reinitiation at upstream AUG codons in the + 1 reading frame [104]. It 
appears that terminating ribosomes are capable of acquiring the initiator 
tRNA before recycling. 

4. Functions of translational “noise” 

The pervasive translational “noise” outside of and within the ca-
nonical coding regions raises an intriguing question concerning the 
physiological functions of alternative translation events. Based on 
where, when, and how these translational “noises” are generated, they 
may exert diverse roles in pathophysiology. Indeed, systematic disrup-
tion of translational “noises” can lead to specific transcriptomic and 
phenotypic changes in human cells. 

4.1. Regulation of mRNA translation 

Alternative translation occurring in the 5’ UTR regulates main CDS 
translation through a variety of mechanisms. Based on the leaky scan-
ning model, uORF translation generally represses the main CDS trans-
lation by consuming the scanning ribosomes [105,106]. This is 
particularly true when the uORF overlaps with the main CDS (Fig. 3A). 
The inhibitory effect of an uORF can be enhanced by ribosomal pausing 
in uORF, thereby blocking the leaky scanning. This can be achieved by 
introducing rare codons into the uORF or by enabling the encoded 
peptide directly interacting with the ribosome [107–110]. On the other 
hand, some uORF translation may promote main CDS translation via the 
reinitiation mechanism when the space between uORF and CDS is 
optimal [111,112]. One of the well-characterized examples is a group of 
mRNAs that are involved in the integrated stress response (ISR), 
including ATF4, GADD34 and CHOP [113]. ISR activation is associated 
with a wide range of human diseases by influencing the translational 
balance between uORF and CDS [114]. For example, the programmed 
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death-ligand 1 (PD-L1) is abnormally upregulated on tumor cells and 
antigen-presenting cells in the tumor microenvironment, resulting in 
tumor immune escape [115,116]. An uORF driven by CUG overlaps with 
the CDS of PD-L1 mRNA, thereby inhibiting PD-L1 translation in normal 
tissues. The uORF translation is bypassed upon ISR activation, contrib-
uting to elevated PD-L1 translation in liver and lung cancers. 

A recent study reported that translational events in 3’ UTR enhances 
main CDS translation [117]. It has been proposed that a closed mRNA 
loop may facilitate recruitment of initiation factors and ribosomes from 
3’ UTR translation to the 5’ end of mRNA. Since active translation in 
3’UTR is relatively rare, the physiological significance of this mecha-
nism remains to be demonstrated. 

4.2. Generation of functional products 

Unlike the annotated main CDS, alternative ORFs typically encode 
short peptides lacking conservation [118]. An increasing amount of 
evidence suggests that de novo translational products of noncanonical 
ORFs could have direct cellular functions (Fig. 3B). For instance, small 
peptides generate by uORFs in fruit fly play crucial roles in development 
[119]. An uORF found on the tumor-suppressive gene PTEN encodes a 
31-aa protein, MP31, which regulates lactate metabolism in mitochon-
dria [120]. Interestingly, loss-of-function mutations in MP31 are 
frequently found in glioblastoma, an aggressive cancer that occurs in the 
brain or spinal cord. Therefore, the uORF product MP31, like PTEN, acts 
as a tumor suppressor by regulating lactate metabolism [119]. Another 
example comes from the uORF on the mRNA encoding the protein kinase 
C-η (PKC-η), a signaling and antiapoptotic stress kinase involved in cell 
proliferation, differentiation, and apoptosis. This uORF encodes a 26-aa 

peptide, uPEP2, which inhibits the kinase activity of PKC-η or other 
PKCs, thus suppressing proliferation and migration of cancer cells [121]. 

Besides identification of individual translational products from 
alternative ORFs, systematic characterization of alternative trans-
lational products remains challenging. A recent study used a systematic 
CRISPR-based screening strategy to knockout hundreds of noncanonical 
ORFs in human cells [47]. The high throughput screen uncovers 230 
uORFs and 2 internal translation that significantly affect cell variability. 
A close examination of the uORF translation revealed that many uORFs 
only slightly inhibit main CDS translation (20% ~ 60% reduction in the 
presence of uORF), suggesting that the main function of those uORFs lies 
in the encoded micropeptides [47]. Another study expressed 553 non-
canonical ORFs in human cells and observed that 73% of ORFs induced 
significant changes in gene expression [45]. The two high throughput 
screens uncovered many novel noncanonical ORF-encoded proteins that 
play critical cellular roles. Interestingly, many noncanonical 
ORF-encoded peptides can be displayed by MHC-I, contributing to the 
antigen repertoire [122–126]. A recent study demonstrated that pro-
longed exposure to IFNγ triggers frameshifting events at the tryptophan 
codons in melanoma cells [82,83]. The frameshifting resulted in the 
generation and presentation of out-of-frame peptides at the cell surface, 
enabling recognition and specific killing of drug-resistant cancer cells by 
T lymphocytes. 

4.3. Regulation of mRNA stability 

It has long been appreciated that efficient translation typically pro-
tects mRNA from degradation. However, whether alternative ORF 
translation influences the mRNA stability remains a fundamental 

Fig. 3. Functions of translational “noise”. (A) uORFs can inhibit main ORF translation (top) when overlapping with the main ORF, or promote main ORF translation 
via reinitiation. Alternative ORFs in 3’ UTR may promote main ORF translation (bottom), possibly by facilitating recruitment of initiation factors and ribosomes from 
3’ UTR to the 5’ end of mRNA. (B) Alternative translation products have a wide range of cellular functions. For instance, the uORF products could act as protein 
regulators, binding partners, and protein isoforms. Many microproteins could also server as precursors for peptides presented by MHC class I molecules. (C) uORF 
translation or ribosome frameshifting can trigger UPF1-mediated mRNA decay. 
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knowledge gap. Nonsense-mediated decay is an RNA surveillance 
pathway that eliminates the mRNAs with premature translation termi-
nation codons (PTC). Similar to the finding that a longer 3’ UTR more 
likely activates NMD, mRNAs with robust uORF translation are targeted 
by NMD (Fig. 3C) [127,128]. Using massively parallel reporter assays, a 
recent study confirmed the negative correlation between uORF trans-
lation and mRNA stability. Notably, uORF translation-mediated mRNA 
decay requires UPF1, a core component of NMD machinery. Besides 
uORF translation, mRNAs with out-of-frame initiation from the main 
CDS or ribosomal frameshifting are likely the targets for NMD. Indeed, 
analysis of NMD targets reveals a higher amount of out-of-frame trans-
lation on the mRNAs targeted by NMD [129]. Emerging evidence sug-
gests that the codon optimality is another determinant of mRNA stability 
[130]. It remains to be determined whether the frameshifting induced 
by non-optimal codons serves as the underlying mechanism. 

5. Conclusions 

A central tenet of biology is the accurate flow of genetic information 
from nucleic acids to proteins. Biological noises, however, are often 
overlooked. In some circumstances, decreasing the fidelity of DNA 
replication and RNA transcription can be beneficial for biological pro-
cesses. For example, somatic hypermutation reduces the fidelity of DNA 
replication by over 1,000-fold and enables B-cells to generate a highly 
diverse library of receptors [131]. The ~100-fold lower fidelity of 
retroviral reverse transcriptase enables the generation of a diverse 
population of retroviruses, some of which can better survive cellular and 
pharmacological attacks [132]. Translational fidelity is maintained at 
two fundamental steps: aminoacylation and ribosome decoding. 
Intriguingly, tRNA misacylation and ribosome recoding have been 
shown to protect cells from oxidative stress [133]. The rapid develop-
ment of Ribo-seq technologies over the past decade has provided a 
unique opportunity for taking a global snapshot of the translatome as 
well as translational “noise”. Understanding the origin of translational 
“noise” greatly increases the proteome diversity and complexity. From 
alternative initiation, frameshifting, to stop codon readthrough, the 
pervasive noncanonical translation could explain thousands of mass 
spectrometry spectra unannotated from human proteome. 

Exploring translational “noises” under different experimental con-
ditions could indicate whether the translational infidelity arises from 
error, or represents a potential feature conferring an advantage. Indeed, 
some microproteins derived from noncanonical translation play crucial 
roles in cell survival. Of note, translational “noises” are typically 
increased in response to stress conditions. Nutrient stress rapidly alters 
the proteome landscape via translational reprogramming [134]. Upon 
amino acid deprivation, general protein synthesis is rapidly suppressed 
but a subset of mRNAs undergoes selective translation. To support se-
lective protein synthesis, degradative systems are activated to recycle 
intracellular amino acids. However, what protein sources are preferen-
tially allocated for degradation remains a debatable subject. Previous 
studies proposed that a ribosome autophagy (ribophagy) pathway sup-
plies internal amino acids during acute nutrient stress [135], but sys-
tematic quantitation of ribosome inventory showed minimal ribosome 
degradation [136]. It is conceivable that stress-induced translational 
“noises” provide a degradative source for intracellular amino acid 
recycling, which is essential for selective protein synthesis. 

Clearly, combining multiple emerging technologies will paint a 
multilayered picture of translational “noise” with higher resolution. 
Future investigation will be required to capture dynamic translational 
“noise” at single-cell levels with spatial resolution. Another important 
field is to develop deep learning-based modeling to predict translational 
“noise” from mRNA sequences. Finally, it is highly desirable if we could 
fine-tune translational “noises” across transcriptome or towards indi-
vidual transcripts, which might ultimately lead to the development of 
new therapeutic strategies for human diseases. 
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